!

B e

February 1993

AD-A262

Y3

28
LT I!I?ll8

‘ Report No. STAN-CS-92-1463 j 2})

A Temporal Proof Methodology for Reactive Systems

by

Zohar Manna and Amir Pnueli

Department of Computer Science

132 004

Stanford University
Stanford, California 94305

i o
P Yo
= ~ B
" T, RS
.. !E‘Q; i, .
- e e SR
- * 7L, ¥ -
o S R
~
* v\\‘

3-07570
\\\\\\\\\\\ | \Y\\\\\\Y\\\\\\\\\\\\\

REPORT DOCUMENTATION PAGE

form Apgroved
OMS8 Mo 07040188

mmw-um of o "
™e suta e Kool " the comecton of

10 sverage qummmmvummmm SOTE warew.

bl v v

mwmvnonmﬂm

!Tam OBt this Sreen. (owmnqton lamus.f‘

omm Sutte 1204, Arvegun, ¥ mn-ma mwmm.muwiwm'w mm-mxm Wesningwn O

W
1. AGENCY USE ONLY (Leave blank) | 2. REPORY DATE

3. REPORT TYPE AND DATES COVIRED

m ‘Iﬂm

-~y g emr— it
4. TITLE AND SUSTITLE
A Temporal Proof Methodology for Reactive Svstems

6. AUTHOR(S)

Zohar Manna and Amir Pnueli

5. PUNDING NUMSERS

NAGZ2-703

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Computer Science Department
Stanford University
Stanford, CA 94305-2140

8. PERFORMING ORGANIZA TION
REPORY NUMSER

STAN-C5-93~1463

9. SPONSORING) MONITORING AGENCY NAME(S) AND ADORESS(ES)
DARPA/CSTO

3707 N. Fairfax

Arlington, VA 22203-1714

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

120. OISTRISUTION / AVAILABILITY STATEMENT

Unlimited

120. OISTRIBUTION CODE

e ———————
13. ABSTRALT (Maximum 200 words)

. — -
18. SUBIECT TERMS
Mathematical Theory of Computation

OF REPORT OF THIS PAGE OF ARS
Unclagsified Unclassified

T S - S =) e T e T Y= P P - - P vt
17. S(CUEW CLASSIFICATION]18. SECURITY CLASSIFICATION | 19. S!CU%Q;SSW!CA“ON 20. UWMNTATION OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
37

16. PRXCE CODE

S -

A Temporal Proof Methodology for Reactive
Systems *'

Zohar Manna Amir Pnueli
Stanford University? Weizmann Institute of Science’

February 15, 1993

Abstract. The paper presents a minimal proof theory which is adequate for prov-
ing the main important temporal properties of reactive programs. The properties
we consider consist of the classes of invariance. response, and precedence properties.
For each of these .iasses we present a small set of rules that is complete for verify-
ing properties belonging to this class. We illustrate the application of these rules
on several examples. We discuss concise presentations of complex pro-fs using the
devices of transition tables and proof diagrams.

Contents

1 Introduction 2

2 Programs and Computations 3

3 The Main Examples: Mutual Exclusion 5
3.1 Peterson’s Program 6
3.2 Dekker's Program 6

4 A Program as a Fair Transition System 7

5 Invariance Properties 10
5.1 A BasicInvarianceRule 10
5.2 A Rule for Incremental Proofs i
5.3 Mutual Exclusion for Peterson’s Program 12
5.4 Mutua! Exclusion for Dekker's Program 14

*This research was supported in part by the National Science Foundation under grant CCR-89-11512:
by the Defense Advanced Research Projects Agency under contract NAG2-703. by the United States Air F‘?
Force Office of Scientific Research under contracts AFOSR-90-0057, and by the European Community —
ESPRIT Basic Research Action project 6021 (React}.

tA preliminary and abbreviated version of this paper appeared in [MP90)}. B

!Department of Computer Science, Stanford University, Stanford, CA 94305. . T
E-mail: manna€@cs.stanford. edu i i

$Department of Computer Science, Weizmann Institute, Rehovot. Israel. e
E-mail: amir@wisdom.yeizmann.ac.il L R

Dor
5y

J]

kS S PO

6 Response Properties 16
6.1 The Basic Response Rule 17
6.2 The Chain Rule for Response 14
6.3 Presentation of Proofs by Tables 20
6.4 Presentation of Proofs by Diagrams
6.5 Accessibility for Peteron’s Program

6.6 Accessibility for Dekker’s Program I
7 Precedence Properties 32
7.1 Bounded Overtaking 33
7.2 A Rule for Precedence 313
7.3 1-Bounded Overtaking for Peterson’s Program 34
7.4 Tables and Diagrams for Precedence Proofs 35

1 Introduction

In this paper we present a minimal proof theory that is adequate for proving interesting
properties of reactive systems. Reactive systems are systems (and programs) whose main
role 1s to maintain an ongoing interaction with their environment. rather than to pro-
duce souue final result on termination. Such systems should be specified and analyzed in
terms of their behaviors, 1.e., the sequences of states or events thev generate during their
operation. The class of reactive systems includes programs such as operating systems,
programs controlling industrial plants, embedded systems, and many others. It is clear
that it also includes the classes of concurrent and distributed programs since, independent
of the goal and purpose of the complete system, each component of the svstem has to be
studied in terms of the interaction it maintains with the other components.

A reactive program may be viewed as a generator of computations which. for simplicity.
we may assume to be infinite sequences of states or events. In the case that the program
does terminate, we may always extend the finite computation it has generated by an
infinite sequence of duplicate states or dummy events to obtain an infinite computation.

An important approach to the specification and verification of reactive systems is
based on specifying a program by listing several properties, representing requirements
that the program ought to satisfy. This approach enjoys the advantages of abstraction
and modularity.

By abstraction we mean that, since the specifier lists separate properties and is not
required to show how they can be integrated or to worry about how they may interact with
one another, he is not tempted to overspecify or actually design the system. Consequently.
‘this approach leads to specifications which are free of implementation bias.

By modularity we mean that a property-list based specification is very easy to modify
by dropping, adding or modifying a single property. Also, the process of verifying that a
proposed implementation satisfies its specification can be done in a modular fashion. by
verifying each property separately.

Several formal approaches have been proposed over the years for expressing and ver-
ifying properties of programs, including the language of temporal logic {Pnu77. Lam83]
and the formalism of predicate automata [AS89, MP87]. The thecretical investigations
into the questions of the expressibility of the specification language and the completeness

of the proof theory associated with these formal approaches grew into a large body of
knowledge. This may create the false impression that all that body of knowledge 1 es
sential for the application of the methodology, and that a heavy investmient in learning
all this theoretical material is necessary.

One of the points we would like to demonstrate in this paper is that a very hittle general
(temporal) theory is required to handle the most important properties of concurrent
programs that oc~ir in practice. The types of properties on which a practicog verifier
typically spends the most time usually fall into a few simple classes. By presenting a
simple but complete set of rules for verifving properties belonging to each of these classes,
we provide the practicing verifier with precisely the tools that are needed. Consequentiy,
the approach we take in this paper is to circumvent the general theory of temporal logie
and proceed as directly as possible to the introduction of the classes of properties that are
most frequently verified and to the proof rules that are appropriate for their veniheation.
We consider three classes of properties. which we believe to cover most of the properties
one would ever wish to verify for a reactive program.

To express the properties of programs, we use a specification language. whose building
blocks are state formulas (also called assertions). These are first-order formulas which
describe program states that can arise in a computation.

The three classes we consider are:

e [nvariance ~ An invariance property refers to an assertion p. and requires that p is
an invariant over all the computations of a program P. i.e.. all the states arising
in a computation of P satisfy p. In temporal logic notation. such properties are
expressed by 0Op, for a state formula p.

e Response - A response property refers to two assertions p and g¢. and requires that
every p-state (a state satisfying p) arising in a computation is eventually followed
by a g-state. In temporal logic notation this s written as p=- Cg.

o Precedence - A simple precedence property refers to three assertions p. g, and r. [t
requires that any p-state initiates a g-interval (i.e., an interval all of whose states
satisfy g) which, either extends to the end of the computation, or is termin~ted by
an r-state. Such a property is useful for expressing the requirement that. fullowing
a certain condition p, event r will precede event q.

In temporal logic, this property is expressed by p=-(—gq) Wr, using he waiting-for
operator (weak until) W. More complex precedence properties refei to a sequence of
assertions qo, . . . , §m-1, and replace the requirement of a single g-interval by requiring
a go-interval, followed by a gy-interval, ..., followed by a g, .,-interval.

We refer the reader to [MP91a] for a top-down approach, whic presents the most general
proof rules possible. Here, however, we take the opposite approach of presenting rules
that are closely tailored for these restricted classes.

2 Programs and Computations

The basic computational model we use to represent programs is that of a fair transition
system. In this model, a program P consists of the following components.

o V' = {uy,....u,} - A finite set of state varwables. Some of these vanables repre
sent data variables. which are explicitly manipulated by the program text. Other
vat.ables are control variables. which rerresent. for example. the location of vontral
in each of the processes in a concuirent program. We assume cach variable 1o be

associated with a nonemptv domain over which 1t ranges.

We define a state = to be a type consistent interpretation of Vo assigning 1o each
variable u € V7 a value s[u] over its domain. We denote by ¥ the set of all states.

o O - The initial condition. This is a satisfiable assertion characterizing all the mitial
states, i.e.. states at which the computation of the program can start. A state i
defined to be initial if it satishes ©.

o 7 - A set of transitions. Each transition » € T is associated with an assertion
pAV. V'), called the transition relation. which may refer to both unprimed aud
primed versions of the state variables. The purpose of the transition relation p. s
to express a relation between a state s and its successor s
version to refer to values in s, and the primed version to refer to values in <", For
example. the assertion 1’ = r + 1 states that the value of r in s is greater by | than

its value in s.

We use the unpriumned

e J C T : Asetof just transitions (also called weakly fair transitions). Intuitively. the
requirement of justice for r € J disallows a computation in which 7 is continually
enabled but not taken beyond a certain point.

We define the state s’ to be a 7-successor of the state s if the assertion p, (V. V") is satisfied
by (s.s'), the joint interpretation which interprets r € V as s[z], and interprets r’ as s'[r}.
Following this definition, we can view the transition T as a function 7 : £ — 2% defined
by:

7(s) = {s' | s’ is a T-successor of s}.

We say that the transition 7 is enabled on the state s if 7(s) # &. Otherwise, we say that
7 is disabled on s. The enabledness of a transition 7 can be expressed by the formula

En(r): (3V)p,(V, V"),

which is true in s iff s has some 7-successor.

We require that every state s € L has at least one transition enabled on it. This
is often ensured by including in 7 the idling transition 7, (also called the stuttering
transition), whose transition relation is p, : (V = V’). Thus, s' is a 7,-successor of s iff
s’ =s.

Assume a program P for which the above components have been specified. Consider

O 280,851,852, ,

an infinite sequence of states of P. We say that transition r € T is enabled at position
k of o if 7 is enabled on s,. We say that the transition 7 is taken at position k if sgyq is
a T-successor of s,. Note that several different transitions can be considered as taken at
the same position.

The sequence o is defined to be a computation of P if it satisfies the following require-
ments:

o [nitiality: sg is initial.

o (Consecution: For each j =0.1..... the state s,y is a 7-successor of the state
.e.. 85,41 € 7(s,), for some 7 € T.

o Justice: For each transition 7 € 7. it 1= -t the case that v ix continually enabled
bevond some position j in o, i.e.. 7 is enabled at every position & > ;. while 7 s
not taken bevond j.

We say that a state s is P-accessible if it appears in some computation of P, Clearly, any
T-successor of a P-accessible state is also P-accessible.

We refer the reader to [MP91b] for a more comprehensive notion of a fair transi-
tion system that specifies also a set of compassionate {strongly fair) transitions. The
requirement of compassion is relevant only for programs that use special svnchronization
constructs such as semaphores or message passing statements. In the examples presented
here concurrent processes communicate by shared variables, so there is no need for the
compassion component,

We assume an underlying assertional language, which contains the predicate calculus
and interpreted symbols for expressing the standard operations and relations over some
concrete domains. We refer to a formula in the assertional language as an assertion.

For an assertion p and a state s such that p holds on s. we say that s is a p-state. For
a computation o : sp, $1,..., such that s, is a p-state, we call j a p-position.

3 The Main Examples: Mutual Exclusion

For our main examples we use two programs that have been proposed as solutions to the
mutual exclusion problem.

The simple version of the mutual ezclusion problem considers two processes that need
to coordinate access to a shared resource. This shared resource may represent a shared
variable or a device, such as a disk or printer, that needs to be accessed exclusively. i.e..
protected from interference.

Solutions to the mutual exclusion problem are presented by programs that contain
two concurrent processes. Each process contains two schematic statements: statement
Non-Critical and statement Critical. Statement Non-Critical represents the independent
activity of the process. It stands for an arbitrary complex segment of the program that
represents all the processing that requires no coordination with the other process. It
is not even required that this statement terminates. Nontermination of the non-critical
statement corresponds to the situation in which a certain process needs no further access
to the shared resource. Statment Critical (usually referred to as the critical statement or
critical section) represents all the activity that has to be performed in protected mode. For
this activity, we require eventual termination. Nontermination of the critical statement
corresponds to one process appropriating the shared resource and never releasing it to the
other process. This is, in general, an unacceptable behavior.

An important assumption about both of these schematic statements is that they do
not modify any of the variables that are used in the protocol for coordination between
the two processes.

We present two solutions to the mutual exclusion problem.

local y,,y: :boolean where y, =r y, =F

s : integer where s = |
[¢ : loop forever do 1 { my : loop forever do 1
[£, : Non-Critical] [my : Non-Critical]
[2 Loy = T Mmoo Yy = T
b3: s = 1 1 my: & = 2
€y o await (-y,) V (s = 2) my: await (—y;) V(s = 1)
€5 : Critical ms : (Critical
L Lb: o= F N | Lme: yz = F i]
- P - - P, ~

Figure 1: Program PET: Peterson’s algorithm for mutual exclusion.

3.1 Peterson’s Program

Peterson’s solution to the mutual exclusion problem [Pet83] is presented in Fig. 1. The
basic mechanism protecting the critical sections is provided by the hoolean variables y,
and y;. Each process P;, i = 1,2. that is interested in entering its critical section sets its
y; variable to T. On exiting the critical section, the corresponding y, is reset to F.

The problem with this simple-minded approach is that the two processes may arrive
at their waiting positions, {4 and m, respectively, at about the same time, with both
Y1 = y2 = T. If the only criterion for entry to the critical section was that the y, of the
competitor be false, this situation would result in a deadlock (tie).

The variable s, ranging over {1,2}, is intended for breaking such ties. It mayv be
viewed as a signature, in the sense that each process that sets its y; variable to T also
writes its identity number in s at the next statement. Then. if both processes are at the
waiting position, the first to enter will be P, such that s # 1. For ¢ = 1,2, let j denote
the index of the other process. The fact that s = j means that the competitor, P, was
the last to reach the waiting position and therefore P, should have priority.

3.2 Dekker’s Program

Another program we study is Dekker’s algorithm for mutual exclusion [Dij63]. This was
one of the earliest correct solutions (possibly the first) to this problem.

Similar to Peterson’s algorithm, each of the processes in Dekker’s solution. also uses a
boolean variable y;,¢ = 1,2, that expresses the interest of the process to enter its critical
section. Process P, starts by setting its y; variable to T. It then tests the y, value of
its competitor. If the competing y; is found to equal ¥, P, enters its critical section
immediately. In case of a tie, i.e., both processes have y; = T. we use a tie-breaker. the
variable t (short for turn). This variable ranges over {1,2}, and the process whose number
is ¢ has the higher priority. To ensure fair accessibility, process P, sets variable t to the
value corresponding to its rival on exit from the critical section.

Dekker’s algorithm is presented in Fig. 2.

Let us follow P; on exit from the non-critical section. This is where the protocol of

local y;.y; :boolean where y, =¥ y, =F

t :integer where t = |
" ¢y : loop forever do 1 [mg : loop forever do 1
[£, : Non-Critical] [y 0 Non-Critical 1
&b oy = T My Yy, = T '?
t3: while y, do my . while y, do
fy: if (¢t = 2) then rey o tf (8 = 1) then
(5. yp = F H ms: Yy, = F]
fs: await (t = |) my o awalt (f = 2 }
€0 Yy =T me: o yy = T J
g+ Critical myg: Critical
g . t = 2 me: ! o= |
L _(”1oi i ‘= F J] L L 7w Y2 = F i
~ P - - P, -

Figure 2: Program DEKKER: Dekker’s algorithm for mutual exclusion.

coordination between the two processes starts. Process P, sets at {, its y; variable to T. It
then enters a while loop that continues as long as P, detects y, = T. Process P; identifies
this situation as a tie. Tie breaking is accomplished by one of the processes recognizing
it has a lower priority, resetting its y; variable to F. and then waiting for its priority to
rise. This happens for Py in £5-f;. On the other hand. if P, recognizes it has a higher
priority, it waits for y, to become false. This happens for P, in the tight loop consisting
of ¢3 and ¢4 where, due to t = 1, it never enters the region #5-¢+. Process P, enters its
critical section at {g only when it detects y, = F. After termination of the critical section.
P, first sets t to 2 and then resets y; to F.

4 A Program as a Fair Transition System

Let us consider how program DEKKER (presented in Fig. 2) can be viewed as a fair
transition system.

Below, we identify the four components of a fair transition system. namelv. state
variables, transitions, initial condition, and justice set, for program DEKKER. This enables
us to view the program as a fair transition system, and to apply to it the verification
methods that will later be presented for general fair transition systems.

State Variables

The state variables V' are given by

™ Y1, Y2, t.

Variable 7 is a control variable that ranges over sets of program locations. At any state
of a computation of DEKKER, 7 = {{;,m;}, for ¢, € {0,...,10}, whenever process £} ix

-3

currently in front of the statement labeled ¢, and P, is currently in front of the statement
labeled m,.

Variables yy. y,.t naturally represent the current values of the corresponding program
variables.

Initial Condition
The initial condition @ is given by the assertion
O : (r={l.my}) N myy Ay A (=1

Thus. at the initial state of the program. the two processes reside at their imtial locations
£5.mq, the two boolean variables y,.y, are initialized to r. and t is initialized 10 |,
We introduce several abbreviations for referring to the location of control.

at_€;, : 7N {b..... 60} = {4}

at_m; : w0 {mo.....m} = {mi}

Thus, at_¢; implies ¢; € w and also that ¢, € = for any ; # i. Similar implications hold
for at_m;.

To express the movement of control effected by transitions. we use the following
abbreviations:

move(€,,8;) : at_d; A (v’ =7 {6LU{L})
move(m;, m;) : atom; A (7' =71 —~{m,}U{m,})

Clearly, move({,,¢;) describes the movement of process P; from ¢; to £,.

Transitions

In order to avoid tedious repetition, we will present only some of the transitions for
process P;. We will concentrate on the transitions that correspond to the different tvpes
of statements appearing in the considered program. We refer the reader to {MP91b] for a
fuller account of the transitions corresponding to the different types of statements.

In defining the transition relation p, corresponding to the transition 7, we adopt the
convention by which a variable whose primed version does not appear explicitly in the
formula is preserved by the transition. Thus, if y is a state variable and y’ does not appear
in p,, the clause y’ = y is considered as an implicit conjunct of the formula.

There is precisely one transition 7, corresponding to each statement ¢ in P;. and
one transition 7., for each statement in P,. We denote their transition relations by p/,
and pn,,, respectively. Transition relations that have two possible actions as a result of
testing a condition, such as a while or a conditional statement, are usually represented as
a disjunction pI V pf, where pT represents the case that the test evaluates to T, while pf
represents the case that the test evaluates to F.

® py, : ove(fy, 4y}
This transition corresponds to the case that P, is at £y and moves inside the loop
statement.

® fy 77!01'6(51,['2)
This transition represents the termination of the non-critical section.

o py, cmove(€y. 63) A (y; = T)
This transition corresponds to the case that process P; moves from ¢, to ¢4 while
setting y; to T. Similar transitions are included for the assignment statements +,
and fg.

® pryipp V pt., where

pr; : move(ds.) Ny

pz o move{f,) A -y,

The first disjunct of this transition relation corresponds to the case that the test of
the while statement hoids (i.e., yo = T). In this case P, moves to f;. The second
disjunct correspouds to the case that the test evaluates to F. as a result of which.
P} moves to Eg.

o Py, pZ \Y PZ’ where
PZ 1 move(€y, i) A (t = 2)
pz : move(ly, b3} A {t # 2)

If t = 2 then, according to pz, P; moves from £4 to ¢5. Otherwise it skips the body
of the conditional statement and returns to the while statement at ;.

o py, cmove(lg, l7) A{t = 1)
The transition corresponding to the await statement at & is enabled only if its
condition ¢t = 1 i1s true. When taken, it moves irom ¥ to 5.

® O m0v6(€7,€3) A (y{ = T)
This transition sets y, to T and moves from ¢ to the beginning of the while statement
at 1?3.

o py, : move(ls, {y)
This transition represents the termination of the critical section.

® pr, - move(lig, bo) A (y; = F)
This transition sets y; to ¥ and moves to ¢, to repeat the body of the loop.

A similar set of transitions corresponds to the statements of P,.

In addition to the transitions corresponding to statements of the program, we include
the idling transition 7,, whose transition relation, according to our conventions, can be
written as:

p, T

9

Justice Set

As the set of just transitions. we take all the transitions except for r,. = . and r, .
Transition 7, 1s excluded since it is necessary only if no other transition iz enabled. and
there is no reason to insist that it will be used.

The exclusion of transitions 7, and 7,, from the justice set allows either of the
processes to remain continuously in its non-critical section from a certain point on. Note
that including ry, and 7., in the justice set guarantees that each execution of the critical
sections must terminate.

5 Invariance Properties

An tnvariance property is a property that can be specified by a for-—~ula of the form
ap,

for an assertion p. In this section, we present several rules for proving the validity of
invariance properties over all computations of a program P.

5.1 A Basic Invariance Ruie

For a transition 7 and state formulas p and q, we define the verification condition of .
relative to p and ¢, denoted {p}7{q}, to be the implication:

(p- Ap) = ¢,

where p, is the transition relation corresponding to 7, and ¢', th~ primed version of the
assertion ¢, is obtained from g by replacing each variable occurring in ¢ by its primed
version. Since p, holds for two states s and s’ iff s’ is a 7-successor of s, and ¢’ states that
q holds on ', it is not difficult to see that

if the verification condition {p}r{q} is valid, then every r-successor of a p-state
1s a g-state.

For a set of transitions T C 7T, we denote by {p}T{q} the conjunction of verification
conditions, containing the conjunct {p}r{q} for each 7 € T. In particular. {p}7 {¢}
denotes the conjunction of verification conditions for all r € 7.

The following abbreviations are used to refer te the location of control in 7’ i.e.. after
the transition.

at'_& : 7r'ﬂ {ﬂo,...,l,’m} = {E‘}
at_m; : 7'N{mo,...,mp} = {m;}
Since the transition relation p, often contains a conjunct of the form move(f,..¢,], we

list below some implications o. this formula. They can be used to simplifyv verification
conditions.

move(l;, ¢;) implies: o at_€, -at_{ forall k # .
o at' ¢, -at i forall k #).
e at' _my — alt_my for all k.

Symmetric implications follow from move(m;, m;).

10

The Rule

A basic rule for proving mvariance properties is nile B-INV,

B-INV (Basie lnvartance rule

Bl. & —p
B2 ApiT {p}
=

L

Premise Bl of rule B-1NV ensures that p holds in the first state of a computation since 1t
s implied by ©. Premise B2 ensures that anv suecessor of a pestate ta state satisiving po
12 also a pstate. 1t follows that p holds on all states of every computation of program /7

and. therefore. Zp 1s valid over P

Example

Consider an abstract fair transition svstermn S with a single state vanable roan inital
condition £ = 0. and a single transition = whose transition relation is given by p. - &' =
r + 2 Note that 7 is always enabled and can be taken an unlimited number of thmes.
This system has a single computation. given by

{r) (r 2 {r: 1.
We wish to prove for this system the trivial invariance property
r > 0.

To prove this property, we use rule B-INV with p: (r > 0). The rule requires showing the
validity of the following two premises:

Bli. r=4 — r>0
B2, r'=r+2A 120 — >0

("learly. these two implications are valid. which establishes the invariance of r > 0.

5.2 A Rule for Incremental Proofs

An assertion p that satisfies premises Bl and B2 of rule B-INV i5 called inductive. Rule
B-INV claims that every inductive assertion is invariant. However. the other direction of
this claim is not true. There may be invariant assertions that are not inductive. For
example, the assertion p : z # 1 is invariant over system .57 described above, but is not
inductive. This is because premise B2 for this choice of p is not a first-order tautology.
One remedy to this situation is provided by strengthening. We find a stronger assertion
¥.1.e.. an assertion that implies p, which is inductive. Rule B-1NV is nsed to establish that
is Invariant. and then we use the monotonicity property of invariance for. wmlas given
by rule MON-INV.
Rule MON-1NV (Monotonicity of Invariances):

{p—p.0ov} F op

11

For example, to prove the invariance of p o r # 1 over svstem N, we may tarke the
stronger assertion ¥ : even{r) and show that it s inductve, Rude 818V estabhishes the
invariance of ¥'. Observing that even{r)implies r # 1. the resalt follows by rude Man 18y

An alternative approach to proving invariance of nomnductive aesertions s providesd
by rule INC-INV.

INC-INY (ncremental fnvariance rules

o N

2. & —p
.

3. {paA /\ T {p}
1=}

ap
The rule assumes that several invariants. o¥,. 524 have been proven before, possibiy

by previous applications of rules B-INV and INC-INV in combination with MON-INV Thern.
premise 13 establishes a verification condition whose left-hand side contains the conpunc
ticn A ¥, in addition to the assertion p. Assume that o : sp.5,.... is a computation of
program P. and that premises [1-13 are valid. Then premise 12 ensures, as before. tlat
assertion p holds at sy. Let s, be a p-state. Since assertions ¥,..... ¥ & are mvariant over
P. s, satisfies the conjunction p A A¥,. By premise [3. 5,4, satisies p. [t follows that any
successor of a p-state is also a p-state. and therefore. p is invariant over P.

5.3 Mutual Exclusion for Peterson’s Program

We use the presented rules to establish the main invariance property of program PET.
This is the property of mutual exclusion, stating that processes P, and P, cannot execute
their critical sections at the same time. It it specified by the invariance formula

D_‘(at_fs A at_ms)‘

Thus. we have to show that assertion g : =(at_¢s Aat_ms) is invariant over program PET.

Simple Range Invariants

First, we establish a list of invariants that restrict the range of values that variable < may
assume and relate the values of y;,y, to the locations of P,. P, respectively.

To facilitate the expression of these invariants, we introduce the following abbrevia-
tions for k& < r:

at_€y, : at fyvVat_l V- Vat_é,
at_mg , @ at_mpVat_mgyV---Vat_m,
The assertions whose invariance states the described range restrictions are:

‘Po s =1 \Y S = 2
Py oy e atllye
Vi 1y, & at_mgs

Assertion ¥q states that s can only assume the values 1 or 2. Assertion ¥, states that
y1 = T precisely when P, is executing at one of the locations €3-f¢. Assertion ¥’y states a
similar property for P,.

12

Let us see. for example. how the invariance of an assertion such as ¥, s = 1 v & = 2
is established. We apply rule 8-1NV with p = ¥,. There are two premises to verify.

Premise Il requires showing that © : = = {fy.mo} A~y A =y A s = 1 implies the
assertion s = | Vs = 2. This is obvious.

Premise [2 requires consideration of the verification condition (p. A S0 — < for
every transition r in the program. There are some simple heuristics that let us diseard
immediately many transitions as automatically gnaranteed to preserve 2 The simipiest
annd most effective one is:

All transitions that do not modifv any of the variables on which & depends
are guaranteed to preserve ¥.

This heuristic leads immediately to the conclusion that. for the assertion 7 0 5 = [Vs = 2.
we should only be concerned with the transitions that modify s. These are 1 and .
The verification condition for £3 can be written as

'/\Sl:l/\ N — 5’:1\/
|y . N’ [. A
oty o s

which is obviously valid. The verification condition for mj is similarlyv valid.
We thus conclude that the assertion ¥g: s =1Vs = 2 is an invariant of the program.

As a slightly less trivial case, let us establish the invariance of assertion #; @ y;
at_{3 g. Let us concentrate on proviag premise 12. While the expression at_{3 y is defined
in terms of the control variable = that is modified by every non-idling transition of the
program, it is not difficult to see that the only transitions that affect the value of the
expression at_{3 ¢ as a whole are those that either enter or exit the range f3-fs. Conse-
quently, we only have to consider the transitions ¢, and ¢s. Their verification conditions
can be written as

move({y, €3) A y=TA o Yy > at’ b 6
P #\ e
Tove(fs.eo) Ay, = FA o = Yy & at’ b ¢
ot P I

Since move(€,, ;) implies at’_¢3, from which follows at’ £3 ¢, and move(£s. £) implies
at’_f,, from which follows —at’ ¢, ¢, these verification conditions are valid.

[t is clear that these are the only transitions that change the values of variable y, or
the expression at_¥{3 ¢ on which ¥; depends.

We conclude that ¥, : y; & at_¢s ¢ is an invariant assertion.

An Incremental Proof

Now, let us consider the main invariant assertion ¢ : —(at_€s A at_ms). We begin by at-
tempting to prove it by rule INC-INV, taking ¥, as a previously proven invariant assertion.
Premise 12 is trivially valid. For premise 13, we identify the only relevant transitions as
¢4 and m4. The verification condition for €, can be written as

move(ly,) A (my, Vs =2) A =(at_€s Aat_ms) A y2 & at_may ¢ — -(at"_fs A at’_m;s)
e " ———’ — v Nt o]

144 P ! +
s v, P

13

Since move{€4.6:) implies at €y, ~at _€5. at’_¢5, and at’_ms = at _m,. we can ssmplify this
implication to

at_ £y A s=2 — —at_ms.
which, in view of ¥g: 5 = | Vs = 2, can be written as
at_{g A at_ms — s=1. (o

Obviously, implication (1) is not a first-order tautology. Cousequentlv. if we helieve that
q : =(at_fs A at_ms) is an invariant of program PET. we should adopt (11 as another
invariant assertion. By this and a symmetric argument for /7. we add to the List of
invariant assertions the following two assertions:

il

¥y o oat by AN atims — s=1
vy 1 oat_€s A at_mg — s =2

It is also clear that if these two are invariant then they complete the proof of invariance
of ¢ : —(at_€s A at_ms).

Let us use rule INC-INV to prove the invariance of ¥,. We use the previously proven
invariant ¥; : y; & at_€3 6. Premises Il and I2 are obvious. For premise 13, the only
crucial transitions are €3 (changing at_¢4 from F to T), my (changing at_m; to T}, and
mg (setting s to 2).

The corresponding verification conditions are

AS =1 A - =
oty 2,
Inove(mmms)/\("’y:\/sz*l) Ao Ayreatly e — at N — s =
o s A
move(rrm,md/\--;/\ — - Aat_ ms — -
p.:3 ;’,2 ”

The verification condition for &5 is trivially valid. In the verification condition for mj.
move(my, ms) implies at”_{y = at_{,, and s’ = s. If at_€; = F, then the condition is true
since at’ ¢4 A -+ — 3" =1reducesto*FA--- =8 =1. [fat_€, = Tthen. by ¥;.yy =T
and, therefore, the clause =y, Vs = 1 implies s = s’ = 1. The verification condition for
m3 follows from the observation that move(mgj, my) implies ~at’_ms.

This establishes the invariance of assertion ¥, : at_f€4Aat_ms — s = 1. The invariance
of ¥, : at_€s A at_.my — s = 2 is established in a symmetric way. This concludes the
proof of mutual exclusion for program PET.

5.4 Mutual Exclusion for Dekker’s Program

We proceed to establish several invariants for Dekker’s program, which together vield the
desired mutual exclusion property.

14

Simple Range Invariants

First, we establish a list of invariants that restrict the range of values that variable £ niay
assume and relates the values of yy,y. to the locations of F;. P, respecuively.

Go i (t=1)V (t=2)
¥i oy e (at_ds 5V at_lz 1)
Uy yp e (atomga sV at_ms 10)

Invariant ¥ states that ¢ can only assume the values 1 or 2. Invariant ¥, states that y; = T
precisely when P is executing at one of the locations £3-£5 or at one of the lucations £ty
Invariant ¥, states a similar property for P;. All three of these assertions are inductive,

Proving Mutual Exclusion

After establishing the range invariants, we proceed to establish the main invariance prop-
erty of Dekker's program, namely, that of mutual exclusion. Instead of only forbidding
joint execution of statements ¢g and mg, we prove a stronger exclusion property. given by:

q : —(at-f€s 10 A at_mg y0).

This assertion establishes mutual exclusion of the regions {3 14 and ms_ 0.
To show that assertion q is preserved under all transitions (i.e.. premise [2 of rule
B-INV), we use the following heuristic:

To show that the assertion ¥ is preserved under all transitions, it is sufficient
to consider only those transitions that may potentially falsify ¥, i.e., change ¥
from T to F.

Since assertion g is equivalent to the disjunction—at_£s ;o V —at_mg_ 10. and each
transition in the program can change at most one of the disjuncts but not both. the only
potentially falsifying transitions are those that falsify one of the disjuncts while the other
is already false. Consequently, we need only consider transitions £3 and mj in the cases
that the respective while conditions are false. This leads to the following verification
conditions:

move(€3,88) A-yg A - — —(at_fs 10 A at”_ms_10)
pf; q’

move(ms,mg) A=yy A -+ = =(at_fg 10 A at_ms_10)

ok q'

Consider the case of PZ- Since, move({3, &) implies at_€; = at’_fs = T and at_mg 10 =
al_mg 0, it is sufficient to show

—y2 — ~at_mg o,

which follows from ¥, : y; « (at_-mj_sV at_mg_10). The condition for p,is is established
in a symmetric way.

This proves the property of mutual exclusion for Dekker’s program.

As we will see below, additional invariants are needed for the proof of the response
rroperties of program DEKKER. We will develop them as they are needed.

15

6 Response Properties

Next to be considered is the class of response properties. The typical response property
is expressed by the formula
p=<g,

for assertions p and ¢q. A sequence of states o is said to satisfv the response formula
p=><C¢q if every p-position 2 > 0 is followed by a ¢-position j > . Such a response formula
is said to be valid over the program P (also called P-valid). denoted P = (p=-Cyiif all
the computations of P satisfy the formula. This means that every occurrence of (a state
satisfying) p in the execution of P is followed by an occurrence of ¢. We will often omit
the prefix P |= when stating the validity of a response formula over P,

The temporal logic adepts will recognize =~ as the combination of the two uperators
== and O (see for example [MP89]). However. for our purpose here it suffices to view it
as a single binary temporal operator, whose semantics has been defined above. It is very
similar to the leads-to operator of Unity ([CM88]).

The following axioms and rules identify the basic properties of the response operator
=0,

Axiom RFLX (Reflexivity of Response):

p=p

This axiom expresses the fact that every p-position is trivially followed by a p-position,
namely itself.

Rule TRNS (Transitivity of Response):

{p=-0gq, ¢=0r} K p=0Or

This rule states the transitivity of the response operator. It claims that if every p-position
is followed by a ¢-position, and every g-position is followed by an r-position, then certainly
every p-position must be followed by an r-position.

Rule MON-RESP (Monotonicity of Response):
{p=0q,p>p,9—q F p=0g

This rule allows us to replace in a valid response formula the antecedent p by a stronger
assertion p, and the consequent ¢ by a weaker assertion ¢, and obtain another valid
response formula.

Rule piss (Disjunction of Response):

{p=0r, ¢q==0r} + (pVq)==<r

This rule combines the two response formulae, p=-Cr and ¢=-0r, into the formula
(pV q)==0r. It allows us to prove the last formula by separately considering the case
that p holds and the case that ¢ holds. In this way it supports prcof by case analysis.

16

local r.y: integer where r =0, y =0

£y : while r =0 do my: r = |
P o [6y: y = y+1] WPy | omy
ng

Figure 3: Program TERM: A terminating program.

6.1 The Basic Response Rule

The axiom and three rules listed above are independent of the particular program ana-
Ivzed, and describe basic properties of the response operator. We now present a rule that
enables us to establish the validity of a response formula over a program.

The rule singles out a particular just transition 7, € J. to which we refer as the
helpful transition. It can establish response formulas p=>0Cg¢q that can be achieved by a
single activation of the helpful transition 7,. We therefore refer to this rule as the basie
or single step response rule. The rule uses the auxiliary intermediate assertion ¥ which
describes the situation between the occurrence of p and the occurrence of ¢.

RESP (Basic Response rule)
Rl. p—(qgVvy)
R2. {¥}T{qV ¥}
R3. {#}m{q}
R4. ¥ — En(‘rh)
p=Cq

Premise R1 ensures that p implies ¢ or ¥. Premise R2 states that any transition of the
program either leads from ¥ to ¢ or preserves ¥. Premise R3 states that the helpful
transition 7, leads from ¥ to q. Premise R4 ensures that 7, is enabled as long as ¥ holds.

It is not difficult to see that if p happens, say at position ¢ > 0, but is not followed by
a g, then ¥ must hold continuously beyond this position, and the helpful transition 7, 1s
never taken beyond i. The latter fact follows from premise R3, which states that taking 7,
from a p-state immediately leads to a g-state, contradicting the assumption that q never
happens beyond :. However, due to R4, this means that 74 is continuously enabled but
never taken beyond position 7, which violates the requirement of justice for 7.

Example

We illustrate the application of rule RESP on program TERM presented in Fig 3

This program consists of two processes, P, and P,. Process P, continuously increments
y while waiting for z to become nonzero. Process P, consists of a single statement.
assigning 1 to r.

The response property we wish to establish for this program is that of termination.
It can be expressed by the formula

(at_lpANat_.mo Az =0) =0 (at_€; Aat_my),

that states that the event of being at the beginning of the program (at_€é, A at_myg) is
eventually followed by the event of being at the end of the program (at_{; A at_m,).

17

This property is established by a sequence of lemmas, each applving one of the rules
presented above.
Lemma 1 (r eventually set to 1)

(at_lgAat_-mo Az =0) =C (atfgy Aat_my Ar=1)

‘ This lemma claims that variable r is eventually set to 1 by process P,. which then
moves to m,;. When this happens. process £ is still executing within the loop £;;.
To prove the lemma we choose

p i at_foANat_.mogAr =20
¥y o oat_fpiAat_moAr =0
Th © Tmg

g : at_fgy ANat_my Ar =1

and apply rule RESP.
It is not difficult to see that p implies ¥. It is also clear that taking 7, from a #-state
leads to a state satisfying g (establishing premise R3). and taking any other transition.

-~

i.e.. 7y, or T, preserves ¥ (establishing premise R2). Obviously ¥ implies that 7, is
enabled (establishing premise R4).
Lemma 2 {from ¢, to ¢;)

(at_loANat.my Az =1) =C (at_l Aat_my)

Follows from rule RESP, by taking ¥ = p and 7, = 74,.
Lemma 3 (from ¢; to &)

(at_bhhat.mAr=1) =20 (at_loAat_m Az =1)

Follows from rule RESP, by taking ¥ = p and 74, = 74,.
Lemma 4 (from £, to ¢;)

(atfyAat-mpAz=1) =20 (at_l; Aat_my)

Follows by transitivity (rule TRNS) from Lemma 3 and Lemma 2.
Lemma 5 (from £, to ;)

(at_fo,] ANat.mi Az =]) = (at-ﬂz A at_m;)
Follows by rule DISJ from Lemma 2 and Lemma 4, using the equivalence

at_fg A at-ml Az=1
(at_bggANat.myAr=1) o v
at_fl ANat.mi Az = 1
Lemma 6 (from {{y,mo} to {€2,m1})

(atloAat_-mgAz=0) =C (at_f; Aat_my)

This lemma, which establishes the termination property, follows by rule TRNS from
Lemma i1 and Lemma 5. -

18

6.2 The Chain Rule for Response

The basic response rule supports the proof of response properties which are estabilished
by a single helpful step. As we have seen. even the simple example above requires several
helpful steps to achieve its goal. i.e.. termination. When the number of helpfnl steps
required is small and fixed we can use a sequence of lemmas. each considering a single
helpful step. and then combine their results by transitivity and case sphitting. However,
for the case that a large number of helpful steps is required. we introduce helow a more
powerful rule that allows us to combine the helpful steps.

The following rule for establishing p=-<q uses several intrrmedicte assertions that
hold between the position satisfving p and the position satisfving the goal ¢. We denote

these assertions by ;. where 1 = 1,.... r. Each intermediate assertion ¥, is associated
with a just transition 7, € J. that is identified as helpful for ¥,. For uniformityv. we define
¥o q.

We can interpret the index : of the intermediate assertion #; as a measure of the
distance of the current state from a state that satisfies the goal ¢q. Thus. the lower the
index, the closer we are to achieving the goal q. For a state s. let ¥, be the intermediate
assertion with the smallest 7 s.t. ¥; holds on s. We refer to the index : as the rank of
state s.

Assuming that these constructs have been identified, the following rule establishes the
P-validity of the formula p=-0g.

CHAIN (Chain Rule for Response)
Cl. p— \/ ¥
1=0,....,r
C2. {»}T{V¥,}
1%
C3. {v}n{V¥} fori=1,....r
<4
C4. P — En(r,»)
p=><g

Premise C1 requires that p implies that one of the intermediate assertions ¥, (possibly
¥o = q) holds. Premise C2 requires that taking any transition from a ¥,-state results in a
next state which satisfies ¥;, for some j < i:. Premise C3 requires that taking the helpful
transition 7; from a ¥;-state s results in a next state which satisfies ¥, for ; < i, j.e.. a
strictly lower rank than that of s. We can view premise C2 as stating that the rank never
increases, while premise C3 states that the helpful transition guarantees that the rank
decreases. Premise C4 claims that the helpful transition 7, is always enabled on any state
satisfying ¥;.

Assume that all four premises hold. Consider a computation ¢ and a position
that satisfies p. We wish to prove that some later position satisfies g. Assume to the
contrary that all positions later than m (including m itself) do not satisfy ¢. By ('l
and C2 each of these positions must satisfy some ¥, for j > 0. to which we refer as the
rank of the position. By C2, the rank of the position can either decrease or remain the
same. It follows that there must exist some position k > m, beyond which the rank never
decreases.

Assume that ¢ is the rank of the state at position k. Since ¢ is never satisfied and
the rank never decreases beyond position k. it follows (by (2} that ¥, holds continunally

19

bevond k. By (3. , cannot be taken bevond k. because that would have led to a rank
decrease. By (4. r, is continually enabled bevond k vet. by the argument above, it i
never taken. This violates the requirement of justice for ..

It follows that if all the premises of the rule hold then p=~G g is P-valid.

6.3 Presentation of Proofs by Tables

When presenting a proof by rule CHAIN, we usually do not write down a detailed proof
of each of the premises. Typically. it is enough to identify the intermediate assertions
Fleowe, ¥, and their corresponding helpful transitions r... .. 7,. To convinee the reader
that the effect of each transition on each intermediate assertion has indeed been consid-
ered. we augment the list of assertions and helpful transitions by a transition table that
indicates which transitions may lead from ¥, to ¥, for the various 1.; = 0,....r. By in-
specting this table. and finding out that transitions always lead from «, to &, with 1 > ;.
and that helpful transitions always lead from ¥, to ¥, with 2 > ;. and that all transitions
are accounted for, we gain greater confidence in the correctness of the proof.

Alternately, if we doubt the correctness of the proof. the transition table mentioned
above provides us with a list of claims that can be checked one by one.

Let us consider the proof of the response property

(at_€g Aat.mpgAx=0) =2C (at_€; Aat_m,)

for program TERM presented in Fig. 3. Previously, we have proven this property by
individual applications of rule RESP. Let us now present a proof of the same property by
a single application of rule CHAIN.

As intermediate assertions and helpful transitions we choose:

Py ! 7

at_lpy ANat_mo Az =0|myg

at_ by Aat_miAz=1 | ¢{

at_bgAat_mAz=1| &
at_l; A at_m,

S o N0 O

Next, we present a transition table that shows which transitions may lead from one
intermediate assertion to another.

03 | @2 | |va=¢q
¥3 | o, b1 | mg | Mg
P2 4
Y1 {g
Yo

The meaning of this table can be interpreted as follows. If transition 7 appears in
the row corresponding to ¥; and the column corresponding to ¥,, we say that ¥, is a -
successor of ¥y, and also that 7 leads from ¥; to ¥,. A transition that appears underlined
in the row corresponding to ¥; is identified as the transition that is helpful for v,.

For an assertion ¥;,t > 0, and a transition 7, let @,, #,, be all the r-successors of

¥;. This implies that transition 7 can lead from any ¥,-state only to states which satisfy

20

oneof ¥, ¥, We define the verification condition implied by the table for <, aud -
to be
{Pdr{r, veovia, b

By convention, a transition 7 that only leads from ¥, to itself is not represented
explicitly at row ¥,;. This means that any transition not appearing in row ¢, satishies the
verification condition

{rir{r}.

Note that if 7 1s disabled on all ¥, states then it also leads from +, to itself. The
corresponding verification condition p. A ¥, — ¥, holds trivially since the antecedent is
false. Thus, such transitions do not appear in row ..

We define a transition table to be well-formed if

e Each row for ¥, i > 0. contains precisely one underlined transition. which may
appear in more than one column.

o If 7 leads from ¥; to ¥;, then ¢ > j. and if 7 is underlined. then ¢ > ;.

A transition table 1s defined to be sound with respect to assertion p if all the verification
conditions implied by the table are valid and

e p — \/Q,.

1=0,..., 4

e If 7 is the transition appearing underlined in the row for assertion #,, for 1 > 0.
then ¥; — En(m).

Obviously, a well-formed transition table that is sound with respect to p establishes
the P-validity of the response formula

p =< o
Thus, the table above presents a proof of the property
(at_fo A at_.mo Az = 0) =2 (Gt_eg A at-ml).

Note that the more detailed information provided by the transition table enables us
to consider for each ¥; and 7 the more refined verification condition

(‘Pi /\p"‘) - ("ij VooV LPOJ()
instead of the condition required by premises C2, C3, which is
(Pi A pr) = (PeVProy -V Po),

where k = — 1 for the case that 7 is helpful, and k = ¢ otherwise.

6.4 Presentation of Proofs by Diagrams

An alternative but equivalent presentation of proofs by rule CHAIN can be provided by
proof diagrams. Proof diagrams convey essentially the same information provided by
transition tables, but they do it in a more visual manner that helps to trace the progress
from p to q along a sequence of intermediate assertions with decreasing indices.

21

Flat Diagrams

First, we cons'der the representation of transition tables by Hlat (uustructured diagrais.
These diagrams are labeled directed graphs constructed as follows:

o For each assertion ¥,,t =0..... r. we construct a node and label 1t by »~,.

e For each transition r leading from #, to ¥,. we construct an edge connectine the
node labeled by ¥, to the node labeled by ¥,. and label the edge by = If = is helpful
for ¥, the edge is drawn using a double line. and we refer to it as a double «dgr.
Otherwise, the edge is drawn using a single line. and is called a single edge.

In the case that more than one transition leads from ¥, to ¥,. we draw only one edge and
label it with the set of these transitions. This is considered to be equivalent to the grapl
in which there is a separate edge for each transition. If among the trausitions leading from
¥, to ¥, there is one which is helpful but the others are not. it is necessary to draw two
edges between the corresponding nodes: one double edge labeled by the helpful transition
and one single edge labeled by all the rest.

In Fig. 4 we present a flat diagram representing the transition table presented above.

L0 $3 at_fo‘l Aat.mg A (1‘ = OD

my

o

sz cat_fy Aat.my ANz = ID
I

p1: at_fogNat_my Az = ID
Y

C Yo : at_fl, Aat_my)

Figure 4: Flat proof diagram for program TERM.

For a transition 7 that labels an edge connecting a node labeled by ¥, to a node
labeled by ¥;, we say that ¥; is a 7-successor of ¥; in the diagram.

Verification Conditions implied by a Diagram

As in the case of transition tables, a diagram implies a set of verification conditions that
are more detailed than the uniform conditions generated by premises C2 and C3 of rule
CHAIN. The verification conditions implied by a diagram are defined as follows:

¢ Assume that 7 labels at least one edge departing from ¢,, and let #,,.... ¥, .t > 0,
be all the r-successors of ¢,. Then the implied verification condition is

{80,‘}7‘{‘{)]'1 VeV "QJ':}'

22

o For a transition r that does not label any edge departing from #,. the implied
condition is

A diagram is defined to be well-formed if

o Each non-goal node #;, 1 > 0. has at least one double edge departing from it: all of

then must be labeled by the same transition.
e 1 > j whenever an edge connects ¥, to ¥, aud 1 > j when this edge is doubie.

A diagram is said to be sound with respect to assertion p if all the verification conditions
timplied by the diagram are valid. and so are the implications

e A transition 7 labeling a double edge departing from ¥, implies the condition

v, — En(r)

A well-formed diagram that is sound with respect to p establishes the P-validity of the
response formula

p = ¥o.

Structured Diagrams

When considering large and complex programs, the flat diagrams we have introduce above
tend to become cluttered and unwieldy. We therefore introduce several graphical conven-
tions, following the style of Statecharts suggested in {Har87]. These conventions can he
described as encapsulation conventions. They lead to more structured and hierarchical
diagrams, which may considerably improve the readability and manageability of la-ge and
complex diagrams.

Composite Nodes

The basic construct of encapsulation is the introduction of a composite node containing
one or more internal nodes. We refer to the contained nodes as the descendants of the
composite node. Several levels of encapsulation are allowed. We refer to the nodes that
are not composite, i.e., do not contain any internal nodes, as basic nodes.

It is possible to associate an assertion with each node in the diagram. With the basic
nodes we associate the assertions labeling them. With the composite node n we associate
the assertion which is the disjunction of the assertions associated with the descendants of
n.

23

1

Q (N
) —
Figure 5: Distribution of departing edges.

Distribution of Common Edges

We allow edges to depart from or arrive to composite nodes. The interpretation of an
edge departing from a composite node is that it is equivalent to identically labeled edges
departing from each of its descendants. This interpretation is represented in the graphical
equivalence presented in Fig. 3.

Note that this is fully consistent with the interpretation of a composite node as rep-
resenting the disjunction of the assertions of its descendants. The diagram on the left of
Fig. 5 can be interpreted as implying the verification condition

{o1Vor}m{w}

since the assertion associated with the composite node is ¢ V 3. The diagram on the
right implies the two verification conditions

{pi}r{v} and {@}r{v}

Obviously, the first condition is equivalent to the conjunction of the other two.
Similarly, we interpret an edge arriving at a composite node as though it arrivea
at each of its descendants. This is represented by the graphical equivalence depicted in

Fig. 6.

O

@ -
_©®;

Y

Figure 6: Distribution of arriving edges.

Again, both diagrams represent the verification condition:

{e} 7 { vV va}.

These conventions apply to double edge as well as to single edges.

24

Distribution of Common Conjuncts

assertions of all the descendants of a composite node, and listing 1t at the fead of tie
composite node. This transformation is described by the graphical equivalence presented
m Fig 7.

2

BE

e,
Figure 7: Common conjunct.

Thus, any structured diagram is equivalent to a flat diagram. Consequently. the
notions of well-formed diagrams and the verification conditions implied by a diagram are
meaningful also for structured diagrams. It is possible to check whether a given structured
diagram is well-formed, or to list the verification conditions implied by such a diagram
without actually constructing the equivalent flat diagram.

In Fig. 8 we present a structured version of the proof diagram previously presented
i Fig. 4.

(,93 cat_bgy ANat.mogAr = ())

mo

-

_J

at_my Ar = rl

Q wo : at_f, Aat_my)

Figure 8: Structured proof diagram for program TERM.

This diagram contains a single composite node, whose descendants are (labeled by} ¥,
and ¥y. The double edge labeled by mg, connecting ¥3 to this composite node, represents
the two edges connecting ¥3 to the nodes ¥, and ¥, in the diagram of Fig. 4. Note also

25

the common conjunet at_m, A r = |, that has been factored vut of the two descendants,
and now labels the composite node.

6.5 Accessibility for Peteron’s Program

The main response property for mutual exclusion programs is that of aceessibaety. Tins
property states that whenever a process departs from its non-critical section 11 1s guaran
teed to eventually reach the critical section.

For program PET of Fig 1. this property can be expressed by the response tormula

at_€, =C at €.
In the response proof we make use of the assertion
Ly ot oya2 e at.mag

proven to be invariant in Subsection 3.3.

In Fig. 9 we present an assertion diagram for the proof of this response property.

The diagram traces the progress of P, from ¢; to £5s. Process F; can progress from 7,
(¥s) to € (¥r) and then to €4 with no interference from P,. However. once location £ 1s
entered. it is necessary to analyze the precise location of process P,. On entering {4. P,
may be in any of its locations me-me and s is set (by transition €;) to 1. This range of
possibilities is covered by assertions (nodes) ¥,-¥¢. We use the invariant assertion vy to
assign the appropriate value of y, corresponding to each of these lcations.

Within the composite node corresponding to 4, most of the progress is accompliched
by P,. Thus, transitions my4, ms, and me are responsible for moving the computation out
of states described by assertions ¥, ¥s, and ¥y, respectively.

Assertion ¥3 is an exception, because here, it is again the responsibility of £ to
guarantee an exit. We cannot rely on P; because it is allowed to remain at the non-
critical section m, forever. However, while ¢, is the helpful transision for ¥; (enabled
because y, = F), it is not necessarily the transition taking the computation out of F4-
states. It is possible that m, is taken first. In that czse, the computation moves to v;.
where €4 is no longer enabled, but m; is. Finally, if the computation reaches ¥,. then
¢4 is enabled again (since s = 2) and guarantees an eventual exit to the goal assertion
Po i at_fs.

6.6 Accessibility for Dekker’s Program

Next, we consider program DEKKER. Accessibility for program DEKKER is expressible by
the response formula

at_l; = at_4s.

That is, any state in which P, is observed to be at £;, implying that it is interested in
entering its critical section, must eventually be followed by a state in which P, is observed
to be at the critical section 3. A similar property is claimed for P;.

We partition the proof of the accessibility property into two lemmas, proving respec-
tively,

26

ma
4
ng: at.mz As=1A yg)
ma
(Lplt at_.mg A s=2 A yg)
[¢4)

Figure 9: Proof diagram for accessibility in program PET.

27

Lemma A

at_t; =<0 ((atfy: At=1)V at_fy).
Lemma B

at_b; - At=1 =20 at_fs.

Obviously, the difficult part of the protocol is the loop at ¢4 Lemma B states that f
P, is within this loop and has the higher priority. represented by t = 1. then it will get
to f3. Lemma A claims that if £, is just starting its journey towards the critical section,
then it will eventually gain a higher priority or get to {z anyway.

("learly, by combining these two responsiveness properties. we obtain the accessibility
property.

Proof of lemma A
The proof of the response property
at_{; =0 ((atwfa,,r At=1)V at_fg)

is presented in the diagram of Fig. 10.

It is easy to follow P, from £; to 3. 1f on entry to £3. t = 1, then we are already at
the goal ¥y. Otherwise we enter £3 with ¢t = 2. From {3 we can either take ¢5 and reach
£g {if y» = 1), which again is part of the goal, or proceed to £, (if y» = F). From £,, we
proceed to f5 since t = 2, and then to £ while resetting y, to F. While being at {;-65. P,
may still set ¢ to 1 by performing mg, and then again we move to pq.

However, once we enter #g, P, stavs at £ waiting for ¢t to change to 1. At that point
we have to inspect where P, may currently be. We consider as possible locations of 7
all of m3-myg, tracing their possible flow under the relatively stable situation of t = 2.
y1 = F. We see that all transitions are enabled and lead to mg which eventually sets ¢ to
| as required.

A tacit assumption made in this diagram is the exclusion of mg, mg, m;. and m; as
possible locations while P, is at g with y; = F and ¢t = 2. This assumption must hold for
the program if we believe lemma A to be valid. Indeed, consider the situation that P is
waiting at £g with y, = F and ¢ = 2, while P, is at m;. Since P, is allowed to stay at the
non-critical section forever, this would lead to a deadlock, denying accessibility for P;.

More Invariants

From the discussion above, it follows that if program DEKKER is correct. and guarantees
accessibility to both processes, then the following assertion must be invariant:

302 . Gt..&;_‘e At=2 - at_m3_,9.

The proof of lemma A only needs (at_fs At = 2)) — at_mgj_g, but it is easy to
see that if we had at_fys At = 2 A —~at_mj g, we could immediately proceed to a state
satisfying at_f€s At = 2 A —~at_m, g violating the assumption of the diagram.

By symmetry we should also require the invariance of

% : at..m,,”s/\txl - at_fgng.

28

~)

I
[SV]

(a

mry

Wo . (at-€3,_7 At= 1) \2 at-@

Figure 10: Proof diagram for lemma A.

29

Let us check the verification conditions for 5.
Clearly, ¥, is implied by O.
There are three transitions that may potentially falsify »,.
e Transition mg — making at_m; 4 false.
This transition sets ¢ to | which makes t = 2 false and Lence preserves the trath of
the assertion.
e Transition {3 — making ¢t = 2 true.

This transition leads to at_¢,o which makes at_{, , false.

o (1 while t = 2 — making at_£, s true.

This is possible only if y; = T which, by vy yy «— (@t sV at _tnyg). implhies
at_mj_yo. This almost gives us at_mj;_ . with the exception of ;. We thus need
additional information that exciudes the possibility of P, being at 1m0 while t = 2
This information is provided by the invariants we will develop next.

Clearly, whiie entering mo from mg, P; sets t to 1. Can P; change it back to 2. while £,
is still at my3? The answer is no, because m;g, as we see in ¢ : ~{at_{g 10 A at_mg o). i
still a part of the critical section and therefore €, the only statement capable of changing
t to 2. cannot be enabled.

This leads us to the invariance of

Uy . at_myg — t=1
and its symmetric counterpart
Y3 1 at_fyy — t=2.

To prove Y3, we should inspect two transitions:

o Transition mg — making at_mo true.

This transition sets ¢ to 1.

o /3 while at_mo — making t = 1 false.

Impossible due to the invariance of ¢ : =(at_fs 10 A at_mg_ o).

This establishes the invariance of ¥; and symmetrically ¥;. Having t'; we can use it to
show that the last transition considered in the proof of ¥;, namely €I while t = 2. implies
at_mgz g (excluding at_myq), which establishes the invariance of ¥,.

Proof of Lemma B

Lemma B states that if P, is within the waiting loop £3 with higher priority.i.e..t = 1. then
eventually it will reach f3. It is stated by (at_€3. 7 A t =1) ==Cat_£3. The proof is
presented in the diagram of Fig. 11.

The diagram identifies several major phases in the progress of P, towards its critical
section. First we follow P, through ¢s, 4, ¢7, until it reaches ¢3,. Its progress is not
hindered at g, since t = 1, and no transition of P; can change this fact. Once P; gets to
€34 with y; = T, the diagram recognizes the following cases:

30

ma,ms

at_.mg A ~y;

Figure 11: Proof diagram for lemma B.

31

e [)2 iS at My 10 \r\‘ith Y2 = T.

Eventually P; departs through m, to my, while setting y, 1o F.

o Pyisat my - with y; = F.
There are two ways to exit out of this situation. Either £, will reach and perform ¢,
first. exiting from the while loop to the critical section. Alternately. £, may perform
first one of my or m; and move to ms, while setting y; to T.

L P‘ s at ms s with Yy = T.

Eventually, P, performs ms and moves to my whiie <etting y, to F.

e P is at my with y; = F.

('learly. P, is now blocked at my since t = 1. This allows P to advance at s own
pace to £3. find y, = F. and move to the crtical section at {y.

Note our efforts to minimize the number of assertions by grouping together sitnations
with different control configurations wherever possible. Thus. for all the states where y, =
T and P, is either at £3 or at {4, we do not distinguish between these two possibilities. but
partition the diagram according to the location of P;. This is because. in this particular
situation, it is P, which is the helpful process and we have to trace its progress.

On the other hand. when y;, = r, P, becomes the helpful process and we start dis-
tinguishing between the cases of at_£; and at_¢4, while lumping together the locations of
P, into two groups: mg_» 7 and me. These two groups must be distinguished because it is
possible (though not guaranteed) to exit the first group into a situation of y; = T. but it
is impossible to exit mg into such a situation.

This concludes the proof of the accessibility property for Dekker's program.

7 Precedence Properties

Next, we consider properties that are expressed by formulas of the form
p == ¢W... Wqg Wq,

for any r > 0. Adepts in temporal logic will recognize this formula as a nested waiting-for
formula. For our purposes here it suffices to consider it as a temporal operator of r + 2
arguments,

To define the semantics of this operator, we deal with half-open intervals of the form
[1..7), for 2 £ j. Such an interval consists of all the positions k, such that : < k < ;. Note
that if ¢ = j the interval is empty. For the two intervals [i..j) and [j..k). we say that the
second interval is adjacent to (or follows) the first, and observe that their union is the
half open interval [i..k). We also allow intervals of the form [i..w) for an integer 2 > 0.
and the interval [w,w) which, by definition, is empty.

Given a computation o : sq, 51, ..., we say that the intecval [t..5) 1s a p-interval if for
every k € [i..]), sk satisfies p. By definition, an empty interval is a p-interval for every
assertion p.

A computation o is said to satisfy the precedence formula p=>~¢, W ... Wq Wqp if
for every p-position i there exists a sequence of positions z =1, < 2,3 < ... L1y € w,

32

I

such that [¢,..i,_1) is a g.-interval.... [t1..20) 15 @ gy-interval. and finally of 7 < <0 then
o 1S a go-position. That is, it requires that any p-position initiates a g.-interval. which
is followed by a g¢,_;-interval...., which is followed by a ¢,-interval. which either extends
to infinity or is terminated by a go-position. Note that this definition allows some of 1he
intermediate intervals to be empty, and any of them to extend to mfinity, in which case.
all succeeding intervals are empty and there is no terminating gy-position.

The precedence formula p=~¢-W ... Wq Wqo 1s said to be Porvalid if it satistied by
all computations of program F.

7.1 Bounded Overtaking

Consider program PET of Fig. 1. In the previous section we proved that whenever process
Py exits its non-critical section it eventually reaches its critical section. However. this
guarantee puts no measure on how long it takes for P; to reach the critical section. In
particular, it allows the algorithm to be grossly unfair to one of the processes. allowing P,
one critical entry for each 10 critical entries of P,. To specify that this does not happen
and that the algorithm is reasonably fair to each of the processes. we may impose the
following requirement.:

From the time P, is at ¢4, P, may enter its critical section ahead of P} (overtake
P,) at most once.

We refer to this property as 1-bounded overtaking.
For program PET, l-bounded overtaking from location €4 can be specified by the
precedence formula

at_ly =~ (—at_mse)W(at_mse)W(—at_msg)Wat_lsg

The formula states that, if P, is currentiy at {4, then there may be an interval in which
P, is not in msg, followed by an interval in which P, is in ms g, followed by an interval in
which P, is not in msg, followed by an entry of P, to €56. Any of the intervals may be
empty, in particular the interval of P, being in mgg, which also allows the entry of £ to
f56 without P, getting to mse first. Also, any of the intervals may be infinite. in which
case all the following intervals, as well as the entry of P; to €5, are not guaranteed. This,
however, is not possible because of the previously proven accessibility property for P.

7.2 A Rule for Precedence

We present a single rule PREC for proving precedence formulas. Similar to rule CHAIN.
rule PREC uses auxiliary assertions ¥y, ...,¥, that strengthen assertions ¢o.....q.

PREC (Precedence Rule)
Pl. p — VS".‘

120

P2. ¢, — g forz=0,...,r
P3. {‘P,‘}T{\/S’/’]} fori=1,....7
J<i

p==¢Wg1 - qWeq

33

To justify this rule consider a state s, satisfving p. Bv premise P1. it also vatisties
) J A I yp

¥

\/#,. It follows that there exists some index Jeo 0 < gk < rosuch that s satisties £
ifojk = 0 we are done. since ¥, terminates the required sequence of intervals. Otherwise.
Jk > 0 and we consider sg.; the successor of sg. Premise P3 implies that sioy satisfies
Py, for some jiyy < gk, We now repeat the argument for sy.,. and so on. Denoting the
indices of the assertions established for s; and its successors by Ji. Jkwer. ... premise P3

guarantees that the sequence of indices
Je 2 Jker 2

is nonincreasing. and that it can either terminate at some j,, = 0 or extend to bty It
is not difficult to see that this guarantees a sequence of intervals. [,. [,_,. I; satisfyving
respectively

which may either terminate at a state satisfying ¥y or extend to infinity, Clearly. some
of these intervals may he empty. By premise P2, any interval or state satisfying v, also
satisfies g;. It follows that ¢, Wq,_;...q W ¢, holds at position k in the computation.

7.3 1-Bounded Overtaking for Peterson’s Program

As explained above, 1-bounded overtaking for Peterson's program 1s specified by the
formula

at_ly == (—at_mse)W(at_mse) W(—at_mye) W(at_tss)

We use rule PREC to prove this property for program PET.

To use rule PREC, we have to find four assertions Yo, ¥1. ¥2. ¥3. whose disjunction
is implied by at_{, (satisfying P1), which strengthen the assertions at_f55. —at_ms..
at-mse, —at_mse, respectively (satisfying P2), and which satisfy the verification condi-
tions of premise P3 of the rule.

A natural candidate for ¥ is at_fs ¢ itself,

Yo : at_fsg,

because, obviously, it terminates the waiting period. Proceeding to ¥y, the assertion ¥,
should strengthen —at_msg, and we can safely add to it the conjunct at_¥£,. since the
whole period starts with P; at ¢, and terminates by P, moving to £s.

What additional information should we include in ¥1? Considering the role of v in
the precedence formula and premise P3, ¥; should be such that the only exit to a (=)-
state would be to an (at_fs¢)-state. It follows that ¥, should characterize all the states
in which the next entry to a critical section will be by P,, i.e., all the states in which P
has a definite priority over P;.

Observing that at_€4 Aat_m4 A s = 2 is one such a state. we can add to the assertion
all other states from which this state is reachable by movements of P, alone. This leads
to the assertion

P1 c atly A (atmes V (at-mg A s =2))

34

For the assertion ¥:. it seems sufficient to take
¥ ooat €y A at_mgg.

For ¥5 we have to characterize all the states in which P, has priority over Py, which waits
at £4. Seeing that ¥; and ¥; cover almost all the configurations satisfving at_¢;. the uniy
remaining one is given by

Y3 o oat_fy A at_mg A s = 1.

From the way ¥g—¥3; were constructed, it is obvious that at_{; implies their disjunction
(premise P1), that each of them is a strengthening of the corresponding assertion 1 the
precedence formula (premise P2). and that ¥,-¥5 satisfy premise P3 of rule PrEC.

7.4 Tables and Diagrams for Pre :edence Proofs

Similar to proofs by rule CHAIN, proofs by rule . ..EC can be presented by both transition
tables and proof diagrams. The main differences are that we no longer identifv helpful
transitions and that the existence of a table entry or graph edge leading from +, to ~,
only requires that ¢ > ;.

For example, the proof of 1-bounded overtaking from ¢€; can be represented by the
following table:

Pal|¥21{¥1|%o
Py:at_€y N at_mg A s=1 my
$oiat_ly N at_msg me
Wy iat_ly A (at_mo,,a V (at-my A s =2)> /4
Yo :at_lse

It can also be presented in the proof diagram of Fig. 12

Acknowledgement

We gratefully acknowledge the help rendered by Eddie Chang who critically read various
versions of this manuscript and proposed significant improvements.

References

[AS89] B. Alpern and F.B. Schneider. Verifying temporal properties without temporal
logic. ACM Trans. Prog. Lang. Sys., 11:147-167, 1989.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1983.

[Dij65] E. W. Dijkstra. Co-operating sequential processes. In Programming Languages
(F. Genuys, editor), pages 43-112. Academic Press, 1965.

[Har87) D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comp.
Prog., 8:231-274, 1987.

35

[Lam83]

[MP83)

[MP87]

[MP89)

[MP90]

[MP91a]

[MP91b)

[Pet83]

((li_[4 R

G{;Z at.myg A s = })

T4

(v‘): at_msg)

Mg

C%: at_mg. 3 V (at_-mg A s = 2))

£y

'
Cwﬁo: at_¥sg)

Figure 12: Proof diagram for 1-bounded overtaking in program PET.

L. Lamport. What good is temporal logic. In Proc. [FIP 9th World Congress
(R.E.A. Masor, editor), pages 657-668. North-Holland, 1983.

Z. Manna and A. Pnueli. Proving precedence properties: The temporal way. In
Proc. 10th Int. Collog. Aut. Lang. Prog., volume 154 of Lect. Notes in Comp.
Sci., pages 491-512. Springer-Verlag, 1983.

Z. Manna and A. Pnueli. Specification and verification of concurrent programs
by V-automata. In Proc. 14th ACM Symp. Princ. of Prog. Lang., pages 1-12.
1987.

Z. Manna and A. Pnueli. The anchored version of the temporal framework.
In Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency (J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors),
pages 201-284. Lec. Notes in Comp. Sci. 354, Springer, 1989.

Z. Manna and A. Pnueli. A temporal proof methodology for reactive systems.
In 5th Jerusalem Conference on Information Technology, pages 757-773. 1990.

Z. Manna and A. Pnueli. Completing the temporal picture. Theor. Comp. Sci.,
83(1):97-130, 1991.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer-Verlag, New York, 1991.

G. L. Peterson. A new solution to lamport’s concurrent programming problem.
ACM Trans. Prog. Lang. Sys., 5(1):56-65, 1983.

36

[Pnu77] A. Pnueli. The temporal iogic of programs. ln Proc. [xth [EEE Symp. Found
of Comp. Sci.. pages 16-57, 1977.

[Szv88] B. K. Szymanski. A simple solution to Lamport’s concurrent programming p:ob-
lem with linear wait. In Proc. 19588 International Conference on Supercomputing
Systems, pages 621-626. St. Malo, France. 1933.

37

